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Abstract

The Space Shuttle avionics softwar e represents a successful integration of many of the computer
industry's most advanced software engineering practices and approaches. Beginning in the late
1970's this software development and maintenance project has evolved one of the world's most
mature software processes applying the principles of the highest levels of the Carnegie Méellon
University Software Engineering Institute's Capability Maturity Model, Trusted Software
Methodol ogy, and 1SO 9001 Standar ds. This softwar e process, considered to be a "best practice” by
many softwar e industry organizationsincludes state-of -the-practice software reliability engineering
methodol ogies. Life-critical Shuttle avionics software produced by this processis recognized to be
among the highest quality and highest reliability softwarein operation in the world. This case study
explores the successful use of extremely detailed fault and failure history, throughout the software
life cycle, in the application of software reliability engineering techniques to gain insight into the
flight-worthiness of the software and to suggest "where to look" for remaining defects. Therole of
softwarereliability model sand failure prediction techniquesis examined and explained to allow the
use of these approaches on other software projects. One of the most important aspects of such an
approach, "how to useand interpret theresults' of the application of such techniquesisaddressed .

Keywords Verification and vdidation, software reiability measurement and prediction, safety critica
software, risk andysis.

Space Shuttle Flight Softwar e Application

The Space Shuttle Primary Avionics Software Subsystem (PASS) representsasuccesstul integration of
many of the computer industry's most advanced software engineering practices and approaches. Beginning
inthe late 1970's this software devel opment and maintenance project has evolved one of theworld's most
meature software processes goplying the principles of the highest levelsof the Software Engineering Ingtitute's
Capability Maturity Model and 1SO 9001 Standards. This software process, considered to be a "best
practice’ by many software industry organizations includes state-of-the-practice software rdiability
engineering (SRE) methodologies. Life-critical PASS produced by this processisrecognized to beamong
the highest qudity and highest rdiability softwarein operationin theworld. Using this gpplication, we show
how SRE can be gpplied to: interpret software rdiability predictions, support verification and vaidation of
the software, assesstherisk of deploying the software, predict the rdiability of the software, developtest
drategiesto bring the softwareinto conformance with reiability specifications, and makerdiability decisons
regarding deployment of the software.



Rdiability predictions are currently used by Lockheed-Martin Space Information Systems to add
confidenceto established positionsregarding low failure probabilitiesfor the PASSthat are based onforma
software certification processes. It isthe purpose of this case study to share the experience obtained from
the use of SRE on this project, since this gpplication is judged by the Lockheed-Martin team to be a
successful attempt to apply SRE to this software. The SRE techniques and concepts employed by
L ockheed-Martin should be of vaue for other software systems.

Interpretation of Softwar e Rdiability Predictions

Successful useof gatigica moddingin predicting therdiagbility of asoftware sysem requiresathorough
understanding of precisaly how the resulting predictions are to be interpreted and applied [9]. The PASS
(430 KLOC) is frequently modified, a the request of NASA, to add or change capabilities usng a
congtantly improving process. Each of these successive PASS versions condtitutes an upgrade to the
preceding software verson. Each new version of the PASS (designated as an Operationd Increment, Ol)
contains software code which has been carried forward from each of the previous versons ("previous-
version subset") aswell asnew code generated for that new version ('new-version subsat").We havefound
that by applying ardiability modd independently to the code subsets according to the following rules, we
can obtain satisfactory composte predictions for the total version:

(2) dl new code developed for aparticular version uses the same development process.

(2) dl code introduced for the firgt time for a particular version is consdered to have the same life and
operational execution higtory

(3) oncenew codeisadded to reflect new functiondity inthe PASS, this codeisonly changed thereafter to
correct faults.

Itisessentid to recognizethat this gpproach requires avery accurate code change history so that every
failure can be uniquely attributed to the verson in which the defective ling(s) of code werefirst introduced.
Inthisway it is possible to build a separate failure history for the new code in each release. To apply SRE
to your software system you should consider breaking your systems and processes down into smaler
elementsto which ardliability modd can be more accurately applied. Using this gpproach, we have been
successful in gpplying SRE to predict the reiability of the PASS for NASA.

Estimating Execution Time

We egtimate execution time of segments of the PASS software by analyzing records of test casesin
digital smulationsof operationa flight scenariosaswell asrecordsof actud usein Shuttle operations. Test
case executions are only counted as" operational execution time' for previous-version subsets of theverson
being tested if the smulation fiddity very closdly matches actua operationa conditions. Pre-rel ease test
execution timefor the new code actudly being tested in aversonisnever counted as operational execution
time. We use the fallure history and operationa execution time higtory for the new-code subset of each
verson to generate an individua rdiability prediction for that new code in each verson by separate



goplications of the reliability mode. This approach places every line of codein thetotal PASSinto one of
the subsets of "newly" developed code, whether "new” for the origina version or any subsequent version.
We then represent the totd rdiability of the entire software system as that of a composite system of
separate components ("new-code subsets'), each having an individua execution history and reliability,
connected in series. Lockheed-Martin is currently using this gpproach to apply the Schneidewind [8,9]
model as ameans of predicting a " conservative lower bound” for the PASS ridbility.

I nter pretations and Credibility

Thetwo mogt criticd factorsin establishing credibility in softwarerdiability predictionsarethevdidation
method and the way the predictions are interpreted. For example, a "conservative' prediction can be
interpreted as providing an "additiond margin of confidence” in the software rdiability, if that predicted
reliability aready exceeds an established "acceptable leve” or requirement. Y ou may not be ableto vaidate
that you can predict the rdiability of your software precisdly, but you can demondrate that with "high
confidence" you can predict alower bound on therdiahility of that software within aspecified environment.
If you can use higtoricd failure dataat aseries of previousdates (and you havethe actua datafor thefailure
history following those dates), you should be able to compare the predictions to the actua reiability and
evauate the performance of the model(s) used. Y ou should take dl these factorsinto consderation asyou
edtablish vaidation success criteria. Thiswill aso sgnificantly enhance the credibility of your predictions
among those who must make decisions based on your results.

Verification and Validation

Software reliability measurement and prediction are useful gpproachesto verify and vaidate software.
Measurement refersto collecting and andyzing data about the observed rdiability of software, for example
the occurrence of fallures during test. Prediction refers to using a modd to forecast future software
religbility, for examplefallurerate during operation. Measurement aso providesthefalure datathat isused
to estimate the parameters of rdliability models (i.e., make the best fit of the model to the observed failure
data). Once the parameters have been estimated, the mode is used to predict the future reliability of the
software. Verification ensures that the software product, asit exists in agiven project phase, satisfies the
conditions imposed in the preceding phase (eg., rdiability messurements of safety critical software
components obtained during test conform to reliability specifications made during design) [5]. Vaidation
ensures that the software product, as it exists in a given project phase, which could be the end of the
project, satisfies requirements (e.g., software riability predictions obtained during test correspond to the
religbility specified in the requirements) [5)].

Ancther way to interpret verification and validation isthat it builds confidence that software isready to
be released for operationa use. The release decisoniscrucid for systemsin which softwarefailures could
endanger the safety of the misson and crew (i.e.,, safety critical software). To assst in making an informed
decison, we integrate software risk andysis and rdliability prediction, and we are eva uating stopping rules
for testing. This gpproach is applicable to dl safety criticd software. Improvements in the religbility of
software, where the reliability measurements and predictions are directly related to mission and safety,
contribute to system safety.



Rédliability M easurements and Predictions

There are a number of measurements and predictions that can be made of rdiability to verify and
vdidate the software. Among these areremaining failures, maximumfailures, total test timerequiredto
atain agiven fraction of remaining failures, and time to next failure. These have been shown to be
useful measurements and predictionsfor: 1) providing confidence that the software has achieved reigbility
gods, 2) raiondizing how long to test asoftware component (e.g., testing sufficiently long to verify that the
measured rdiability conformsto design specifications); and 3) analyzing therisk of not achieving remaining
failure and timeto next failure gods|[6]. Having predictions of the extent to which the softwareis not fault
free (remaining failures) and whether afalureit islikely to occur during amisson (timeto next failure)
provide criteria for assessing the risk d deploying the software. Furthermore, fraction of remaining
failures can be used as both an operational quality god in predicting total test timerequirementsand,
conversdy, asan indicator of operational quality asafunction of total test time expended [6].

The various software reliability measurements and predictions can be divided into the following two
categories to use in combination to assist in assuring the desired leve of rdligbility of the softwarein safety
critica sysems likethe PASS. Thetwo categoriesare: 1) measurementsand predictionsthat are associated
with resdud software faultsand failures, and 2) measurements and predictionsthat are associated with the
ability of the softwareto complete amission without experiencing afailure of aspecified severity. Inthefirst
category are: remaining failures, maximumfailures, fraction of remaining failures, andtotal testtime
required to attain a given number or fraction of remaining failures. Inthe second category are: timeto
next failure and total test time required to attain a given timeto next failure. In addition, thereisthe
risk associated with not attaining the required remaining failuresand timeto next failure. Lagtly, thereis
operational quality that is derived fromfraction of remaining failures. With this type of information a
software manager can determine whether more testing iswarranted or whether the software is sufficiently
tested to alow itsrelease or unrestricted use. These predictions provide a quantitative bassfor achieving
reliability gods[2].

Risk Assessment

Safety Risk pertains to executing the software of asafety critica system where there is the chance of
injury (eg., astronaut injury or fatality), damage (e.g., destruction of the Shuttle), or loss(e.g., loss of the
mission) if aserious software failure occurs during amisson. In the case of the Shuttle PASS, wherethe
occurrence of even trivid falures is extremely rare, the fraction of those falures that pose any safety or
misson successimpact istoo smal to be satisticaly sgnificant. Asaresult, for thisgpproach to befeasible,
al falures(of any severity) over the entire 20-year life of the project have beenincluded in thefallure history
database for this andyss. Therefore, the risk criterion metrics to be discussed for the Shuttle quantify the
degree of risk associated with the occurrence of any softwarefalure, no maiter how inggnificant it may be.
The approach used can be gpplied to Safety Risk where sufficient data exist.



We are experimenting with an dgorithm, which uses of the Schnei dewind Software Reliability Model
to compute a parameter: fraction of remaining failures asafunction of the archived failure history during
test and operation [6]. The prediction methodology uses this parameter and other reliability quantitiesto
provide boundsontotal test time, remaining failures, operational quality, andtimeto next failurethet
are necessary to meet arbitrarily defined Shuttle software rdiability levels. The total test time versus
fraction of remaining failures curve shows a pronounced asymptotic characteristic that indicates the
posshility of big gains in reigbility as testing continues, eventudly the gains become margind as testing
continues.

Two criteriafor software rdiability levelswill be defined. Then these criteriawill be gpplied to the risk
andyds of sefety criticd software, using the PASS as an example. In the case of the Shuttle example, the
"risk" will represent the degree to which the occurrence of failures does not meet required religbility levels,
regardiess of how inggnificant thefalluresmay be. Next, avariety of prediction equaionsthat are used in
religbility prediction and risk andysiswill be defined and derived; included isthe relationship between time
to next failureand reduction in remaining failures. Then it isshown how the prediction equations can be
used to integrate testing with relidbility and quaity. An example is shown of how the risk anadyss and
reiability predictions can be used to make decisons about whether the software is ready to deploy; this
approach could be used to determine whether a software system is safe to deploy.

Criteriafor Reliability

If thereigbility god isthe reduction of failures of aspecified severity to an acceptablelevd of risk [7],
then for softwareto be ready to deploy, after having been tested for totd timet, it must satisfy thefollowing
criteria

1) predicted remaining failures r(t)<re, 1)
wherer.isaspecified critica vaue, and

2) predicted time to next failure Te(t)>ty, 2
wheret, ismisson duration. Thetotd timet; could represent a Safe/Unsafe criterion, or thetimeto remove
al faults regardless of severity (as used in the Shuttle example).

For systemsthat are tested and operated continuoudy liketheShuttle, t;, Te(t;), and t, aremeasuredin
execution time. Note that, as with any methodology for assuring software reliability, thereis no guarantee
that the expected level will be achieved. Rather, with these criteria, the objectiveis to reduce the risk of
deploying the software to a"desired” leve.



Remaining Failures Criterion

Usng the assumption that the faults that cause failures are removed (thisis the case for the Shuttle),
criterion 1 specifies that the resdud failures and faults must be reduced to a level where the risk of
operating the software is acceptable. Asa practical matter, r.=1issuggested. That is, thegoal isto reduce
the expected remaining failures of aspecified severity to lessthan one before deploying the software. The
assumption for this choice is that one or more remaining failures would congtitute an undesirablerisk of
failuresof the gpecified severity. Thus, oneway to specify r isby falure severity levd (eg., incdlude) only life
threstening failures). Another way, which imposes a more demanding criterion, is to specify that r.
represents all severity leve, asin the Shuttle example. For example, r(t))<1 would mean that r(t;)) must be
less than onefailure, independent of severity levd.

If r(t)2 r. is predicted, testing would continue for atotal time t;>t; that ispredicted to achiever(t;)<r,
using the assumption that more failures will be experienced and more faults will be corrected so that the
remaining failureswill be reduced by the quantity r(t,)-r(t;). If the developer does not have the resources
to satisfy the criterion or is unable to satisfy the criterion through additiond testing, therisk of deploying the
software prematurely should be assessed (see the next section). It is known that it is impossible to
demongtrate the absence of faults [3]; however, the risk of failures occurring can be reduced to an
acceptablelevel, asrepresented by r.. Thisscenarioisshownin Fgure 1. Incase A r(t;)<r. ispredicted and
themisson beginsat t;. In case B r(t;)? r. is predicted and the mission would be postponed until the software
istested for total timet;' when r(t;)<r. is predicted. In both cases, criterion 2) would a so be required for
the mission to begin.

Timeto Next FailureCriterion

Criterion 2 pecifiesthat the software mugt survivefor atime greeater than the duration of themission. If
Te(t)Ety, is predicted, the software is tested for atotal time t;">t; that is predicted to achieve Tg(t;")>tn,
using the assumption that more failures will be experienced and faults corrected so that the time to next
failurewill beincreased by the quantity Tr(t:")- Te(t;). Again, if itisinfeasiblefor the devel oper tosatisfy the
criterion for lack of resources or falure to achieve test objectives, the risk of deploying the software
prematurely should be assessed (see the next section). This scenario is shown in Figure 2. In case A
Te(t)>t, is predicted and the mission begins at t. In case B Tg(t)£ty is predicted and in this case the
misson would be postponed until the software is tested for total time t;" when Te(t")>t, is predicted In
both cases criterion 1) would aso be required for the mission to begin. If neither criterionis satisfied, the

software is tested for atime which isthe greeater of t;' or t;".

Total Test Time

The amount of total test time t; can be consdered a measure of the degree to which software
reliability gods have been achieved. This is particularly the case for systems like the Shuttle where the
softwareis subjected to continuous and rigoroustesting for saverd yearsinmultiplefacilities, usng avariety
of operationd and training scenarios (e.g., by Lockheed-Martin in Houston, by NASA in Houston for
astronaut training, and by NASA at Cape Canaverd). We can view t as an input to a risk reduction



process, and r(t;) and Tr(t;) asthe outputs, with r. and ty, as"risk criterialevels’ of rdiability that control the
process. While it must be recognized that total test timeis not the only consderation in developing test
drategies and that there are other important factors, like the consequences for reliability and cog, in
sdlecting test cases [11] neverthdless, for the foregoing reasons, total test time has been found to be
grongly postively correlated with relidbility growth for the Shuttle [9].

Remaining Failures

The mean vaue of therisk criterion metric (RCM) for criterion 1 isformulated asfollows:
RCM r(t)= (r(t)-re)/re=(r(t)/ro)-1 ©)

Equation (3) isplotted in Figure 3 asafunction of t; for r.=1, wherepositive, zero, and negativevaues
correspond to r(t)>r, r(t)=re, and r(t;)<r., respectively. In Figure 3, these vaues correspond to the
fallowing regions CRITICAL (i.e., above the X-axis predicted remaining failures are greater than the
gpecified value); NEUTRAL (i.e., on the X-axis predicted remaining failures are equd to the specified
vaue); and DESRED (i.e., below the X-axis predicted remaining failures are less than the specified
value, which could represent a "safe” threshold or in the Shuttle example, an "error-freg' condition
boundary). This graph is for the Shuttle Operational Increment OID (with many years of shdf life): a
software system comprised of modules and configured from a series of builds to meet Shuttle misson
functiond requirements. Inthisexample, it can be seen that a approximately t.=57 therisk trangtionsfrom
the CRITICAL region to the DES RED region.

Timeto Next Failure
Smilaly, the mean vaue of therisk criterion metric (RCM) for criterion 2 isformulated asfollows:
RCM Te(t)=(tm- Te(t))/tm=1- (Te(t))/tm 4

Equation (4) is plotted in Figure 4 as afunction of t; for t,=8 days (a typicd misson duration timefor this
Ql), where positive, zero, and negative risk corresponds to Tg(t)<tm, Te(t)=tn, and Tg(t)>tm,
respectively. In Figure 4, these vaues correspond to the following regions: CRITICAL (i.e., abovethe X-
axis predicted time to next failure is less than the specified vaue); NEUTRAL (i.e., on the X-axis
predicted time to next failure is equd to the specified value); and DESIRED (i.e., below the X-axis
predicted timeto next failureisgreater than the specified value). Thisgraphisfor the Shuttle operational
increment OIC. In thisexample the RCM isin the DESRED region a al vaues of t;.

Approach to Prediction

In order to support the rdliability goa and to assesstherisk of deploying the software, variousreiability
and quality predictionsare made during the test phase to validate that the software meets requirements. For
example, suppose the software reliability requirements ate the following: 1) ideally, after testing the
software for total test timet;, the predicted remaining failures shdl belessthan one; 2) if theided of 1)
cannot be achieved due to cost and schedule congtraints, time to next failure, predicted after testing for



total test time t;, shall exceed the misson duration; and 3) the risk of not meeting 1) and 2) shal be
asessed. Thus, this approach uses a software rdliability mode to predict the following: 1) maximum
failures, remaining failures, and operational qudity (as defined in the next section); 2) time to next
failure (beyond the last observed falure); 3) total test time necessary to achieve required levels of
remaining failures (fault) level, operational quality, andtimeto next failure; and 4) tradeoffs between
increasesin levels of rdiability and qudity with increasesin testing (i.e., cost of testing).

An important concept to note isthat reiability will be measured during test; that is, failure datawill be
collected for two purposes: 1) to verify that the observed data conform to the reliability specified during
design and 2) to provide datafor reliability parameter estimation. With regard to 1), the observedtime to
next failure can be compared to the specified quantity. However, in contrast, observed remainingfailures
and maxi mum failures have no meaning because we don't know how many remaining failures (faults)
there are a a given time during the life of the software and we don't know themaxi mum failures thet will
have occurred at the end of the life of the software. Thusremaining fail ures and maximumfailures only
have meaning as predicted quantities. However, we can make approximationsto these quantitiesfor model
vaidation purposes (see the Summary of Predictions section).

Prediction Equations

In order to consider therisk of deploying the PASS, variouspredictions have been made based on the
Schneidewind Software Reliability Model [1, 8, 9, 10], one of the four models recommended in the
ANSI/AIAA Recommended Practice for Software Reliability[1]. The equationsare derived inthe next
section. They have been applied to andyze the rdiability of the PASS based on the approach
recommended herein. The Statistical Modeling and Estimation of Reliability Functionsfor Software
(SMERFS) [4] isused for dl predictions except t;, which is not implemented in SMERFS.

Because the PASS is run continuoudly, around the clock, in smulation, tet, or flight, "time" refersto
continuous execution time andtotal test timerefersto execution timethat isused for testing. Failure count
intervals are equa length periods of continuous execution time.

In the following equetions, parameter aisthefalurerate a the beginning of interva s, parameter 3is
the negative of the derivative of failure rate divided by falure rate (i.e, rdative falure rate); t is the last
interval of observed falure data; s is the starting interva for usng observed failure data in parameter
estimation that provides the best estimates of a and 13 and the most accurate predictions [8]; X, isthe
obsarved falure count in the rage [1,51]; X isthe observed failure count in the range [st]; and
Xi=Xs1+Xs. Falures are counted againgt operational increments (Ols). Datafrom four Shuttle Ol's,
desgnated OIA, OIB, OIC, and OID are used in this andyss example.

Cumulative Failures

When estimates are obtained for the parameters a and 3, with s as the sarting interva for using
observed failure data, the predicted failure count in the range [ s,t] is obtained:



Fs=(@R)[1-exp(-R((t-s+1)))] ©)

Furthermore, if X1, the observed failure count intherange[1,s-1], isadded to equation (5), the predi cted
failure count in the range [ 1, t] is obtained:

F(t)=(a/R)[1-exp(-(X((t-s+1)))] +Xs1 (6)
Failuresin an Interval Range

Let t=t, and subtract Xy=Xs1+Xs11, the observed failure count intherange [ 1,t,], from equation (6),
then obtain the predicted failure count in the range [ty,t2):

F(ts,t)=(a/B)[1-exp(-((t-s+1)))]-Xs 1 (7
Maximum Failures

Let t=¥ in equation (6 ) and obtain the predicted failure count intherange[1,¥] (i.e., maximum
failures over the life of the software):

F(¥)=allR+Xs 1 )
Remaining Failures

To obtain predicted remaining failuresr(t) at timet, subtract X=Xs1+Xs; from equation (8):
r(t)=(a/R)-Xs=F(¥)-X; 9)

r(t) can also be expressed as a function of total test time t; by subgtituting equation (5) for Xs; in
equation (9) and letting t=t;:

r(t)=(all)(exp-At-(s-1)]) (10)
Fraction of Remaining Failures

If equation (9) is divided by equation (8), fraction of remaining failures, predicted & timet is
obtained:

p()=r(t)/F(¥) (11)
Operational Quality

Theoperational quality of softwareisthe complement of p(t). It isthe degreeto which softwareisfree
of remaining faults (fallures), usng the assumption that the faults that cause failures are removed. It is



predicted & timet as follows:

Q(H)=1-p(t) (12)

Total Test Timeto Achieve Specified Remaining Failures
The predicted total test timerequired to achieve aspecifiednumber of remaining failuresatt;, r(t,),
ty =[logla /(b[r(t)I]/ b +(s- 1) (13)
is obtained from equation (10) by solving for t;:
Timeto Next Failure
By subgtituting t,=t+T(t) in equation (7), letting t;=t, defining F=F(t,t+T¢),and solving for Te(t), the

Tr®)=[(log[a /(a- b(Xgt+Fpl)/ b]- (t- s+1)
(14)
for@/b)>(xgst*Ft)

predicted time for the next F; failures to occur, when the current timeist, is obtained :

Thetermsin Tg(t) have the following definitions

t: Current intervd;
Xst: Observed failure count in the range [st]; ad
F: Given number of failures to occur after intervd t.

Equations(5)-(11) and (14) are predictors of reliability that can berdated to safety or, asintheShuttle
example, the error-free condition of the software; equation (13) represents the predicted total test time
required to achieve stated reliability gods. If a qudity requirement is sated in terms of fraction of
remaining failures, the definition of Q as Operational Quality, equation (12), isthedegreetowhichthe
software meets pecified requirements|[ 7]. For example, if ardiability specification requiresthat softwareis
to have no morethat 5% remaining failures (i.e., p=.05, Q=.95) after testing for atotd of t; intervas, thena
predicted Q of .90 would indicate the degree to which the software meets the requirement.

Rdating Testing to Reliability and Quality

Predicting Total Test Time and Remaining Failures

The tradeoff between testing and reliability can be analyzed by first usng equation (8) to predict
maximum failures (F(¥)=11.76 for Shuttle OIA). Then, using given values of p and equation (11) and



letting t=t;, r(t;) ispredicted for each value of p. Thevauesof r(t;) arethe predictions of remaining failures
after the Ol has been executed for total test timet;. Next, thevauesof r(t;) and equation (13) areused to
predict corresponding vaues of t;. Theresultsareshownin Figure5, wherer(t;)) andt; are plotted against p
for OIA. Note that required total test timet; risesvery rapidly a smal vauesof p andr(t;). Also note that
the maximum value of p on the plot corresponds to =18 and that smaller values correspond to future
vauesof t; (i.e, t>18).

Predicting Operational Quality

Similarly, the tradeoff between testing and qudity can be andyzed by usng equation (12), whichisa
useful measure of theoperational quality of software because it measuresthe degree to which faultshave
been removed from the software (using the assumption that the faults that cause failures are removed),
relativeto predicted maximumfailures. Thistypeof qudity iscaled operational (i.e., based on executing
the software) to distinguish it from static quaity (e.g., based on the complexity of the software). Using given
vauesof p and equations (11) and (12) and lettingt=t;, r(t;) and Q are computed, respectively. Thevaues
of r(t;) are then used in equation (13) to compute t;. Like equation (12), equation (13) has the asymptotic
property of agrest amount of testing required to achieve high levels of qudity.

M aking Rdliability Decisions

In making the decision about how long to tes, t;, the reliability criteriaand risk assessment approach
can be applied. Table 1 isused to illustrate the process. For t,=18 (when thelast failure occurred on OlA),
r=1, and t,,=8 days (.267 intervals), remaining failures, RCM for remaining failures, time to next
failure, RCM for time to next failure, and operational quality are shown. These results indicate that
criterion 2 is satisfied but not criterion 1 (i.e., CRITICAL with respect to remaining failures); aso
operational qualityislow.

By looking at Table 1, it can be seen that if remaining failures r(18) are reduced by 1 from 4.76 to
3.76 (non+integer val ues are poss ble because the predictions are mean values), the predicted time to next
failure that would be achieved is T-(18)=3.87 intervals. These predictions satisfy criterion 2(i.e,
Tr(18)=3.87>t,=.267) but not criterion 1 (i.e., r(18)=4.76>r.=1). Noteasoin Table 1 that fraction of
remaining failures p=1-Q=.40 at r(18)=4.76. Now, if testing is continued for atotd timet,=52 intervals,
as shown in Table 1, and remaining failures are reduced from 4.76 to .60, the predicted time to next
4.16 failuresthat would be achieved is 33.94 (34, rounded) intervas. This correspondsto t;=18+34=52
intervals. That is, if testing is continued for an additiond 34 intervas, sarting & interva 18, another 4.16
failureswould be expected. These predictionsnow satisfy criterion 1 becauser(52)=.60<r.=1. Note also
in Table 1 tha fraction of remaining failures p=1-Q=.05 at r(52)=.60. Using the converse of the
relationship, provides another perspective, where, if testing is continued for an additiona Te=34 intervals,
darting at interva 18, the predicted reduction in remaining failures that would be achieved is4.16 or r
(52)=. 60.

Lastly, Figure 6 shows theDeployment Decision, relevant to the Shuttle (which could betheLaunch
Decision rdative to the Shuttle), where remaining failures are plotted againg total test timefor OlA.



With these results in hand, the software manager can decide whether to deploy the software based on
factors such as predicted remaining failures, as shown in Figure 6, aong with consdering other factors
such asthe trend in reported faults over time, inspection results, etc.. If testing wereto continue until t.=52,
the predictions in Figure 6 and Table 1 would be obtained. These results show that criterion 1 isnow
satidfied (i.e,, DESRED) and operational quality is high. Figure 6 dso shows that a t=52, further
increases would not result in asignificant increase in reliability. Also note that a t=52 it is not feasible to
make a prediction of Tg(52) because the predicted remaining failuresis less than one.

Table 1. Reliability Criteria Assessment of OIA

r=l tm=8
days

t; a R s r(t) RCM s | Tet) | RCM Q
r(t) Tr(ty)

18 5341 .061 | 9 4.76 3.76 9 3.87 -13.49 .60

52 5341 .061 | 9 .60 -.40 9 * * .95

* Cannot predict because predicted Remaining Falluresis less than one.

Summary of Predictions

Table 2 shows asummary of remaining and maximum failure predictions compared with actud falure
data, where available, for OlA, OIB, OIC, and OID. Thepurpose of thisandysisisto validate the mode for
Shuttle applications. Becauseactual remaining and maximum falluresare unknown, theassumption isused:
that remaining failuresare"zero" for those Ol's (B, C, and D) that were executed for extremey long times
(years) with no additiond fallure reports; correspondingly, for these Ol's, the assumption is used that
maximum failures equas total observed failures.



Table 2. Predicted Remaining and Maximum Failures versus Actuals

t; a 3 r(t,) Actual r F(¥) Actual F
OIA 18 534 | .061 4.76 ? 11.76 é
OIB 20 1.69 | .131 0.95 1° 12.95 13°
oIC 20 1.37 | .126 1.87 2¢ 12.87 13°¢
OID 18 738 | .051 7.36 4° 17.36 14°

Timeof lagt recorded failure:
A. No additiona failures have been reported after 17.17 intervasfor OIA.
B. Thelast recorded failure occurred at 63.67 intervasfor OIB.
C. Thelast recorded failure occurred at 43.80 intervas for OIC.
D. Thelast recorded failure occurred at 65.03 intervas for OID.

Table 3showsasummary of total test time andtime to next failure predictions compared with actud
execution time data, where available, for OIA, OIB, OIC, and OID.

Table 3. Predicted Total Test Time and Timeto Next Failure ver sus Actuals

s t(r=1) Actual t, t s | Te®) | Actua T¢
OA| 9 43.59 ? 18 9 3.9 ?
OB | 1 * 63.67 20 0 * 43.67
oc| 7 24.98 27.07 20 5 4.2 7.63
oD | 6 56.84 58.27 18 5 6.4 6.20

* Cannot predict because predicted Remaining Failuresis less than one.

Additiona Predictionsfor OID:

The following are additiond predictions of tota test time for OID that are not listed in
Table 3: t,(r=2)=43.35, Actua=45.17; t,(r=3)=35.47, Actua=23.70.




L essons L ear ned

Severd important |essons have been learned from our experience of twenty yearsin developing and
maintaining the PASS, whichyou could consider for adoption in your SRE process.

1) No one SRE process method isthe"'sIver bullet” for achieving high reigbility. Various methods, including
formd ingpections, falluremodes analyd's, verification and vaidation, testing, statistica processmanagamant,
risk andyss, and reliability modeling and prediction must be integrated and gpplied.

2) The processmust be continually improved and upgraded. For example, recent experimentswith software
metrics have demonstrated the potentid of usng metrics as early indicators of future reliability problems.
This gpproach, combined with inspections, dlows many reliability problems to be identified and resolved
prior to testing.

3) The process must have feedback loops so that information about reiability problemsdiscovered during
ingpection and testing isfed back not only to requirements analysis and design for the purpose of improving
the rdiability of future products but dso to the requirements andyss, desgn, ingpection and testing
processes themsalves. In other wordsthe feedback isdesigned to improve not only the product but aso the
processes that produce the product.

4) Giventhe current sate- of-the- practicein software reliability modeding and prediction, practitioners shoud
not view reiability modds as having the ability to make highly accurate predictions of future software
reliability. Rather, software managers should interpret these predictionsin two sSgnificant ways. @) providing
increased confidence, when used as part of anintegrated SRE process, that the softwareis safe to deploy;
and 2) providing bounds on the reliability of the deployed software (e.g., high confidence that in operation
thetimeto next failurewill exceed the predicted value and the predicted vaue will safely exceed themisson
duration).
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